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Abstract. The simultaneous equations of longitudinal and transverse 
vibrations of an underground polymeric L-shaped pipeline under the 
arbitrary direction of seismic load were derived in the paper. A 
computational scheme of the problem was constructed using central finite-
difference relations. The analysis of the results obtained on the 
simultaneous longitudinal and transverse vibrations of underground 
polymeric L-shaped pipelines under seismic loading was conducted. The 
stress-strain state of the L-shaped polymeric pipeline subjected to seismic 
effect was determined, and the axial forces and bending moments arising in 
curved pipelines during an earthquake were determined. 

1 Introduction 

The issues of increasing the seismic resistance of underground pipelines, mitigating seismic 
effect, and possible damage during earthquakes are of great importance worldwide. 
Improving the seismic resistance, reliability, and safety of pipeline transport is an urgent 
task. Pipelines laid in difficult geotechnical conditions experience such loads as the weight 
of the pipeline conveying a product, the weight of soil surrounding the pipeline, the 
response of soil to the pipeline strain, internal working pressure and temperature stresses, 
the loads related to the changes in physical and mechanical characteristics of the soil. To 
avoid pipeline failures and accidents, it is necessary to establish the influence of design 
features, the changes in operating conditions, and parameters on the strength and stability of 
the pipeline. 
To ensure the earthquake resistance of the above-ground and underground sections of the 
pipeline, it is necessary to study its stress-strain state (SSS), taking into account the natural-
climatic loads and the operating parameters and design features of the pipeline, the 
influence of various forms of bending. 
The grounds of the dynamic theory of earthquake resistance of complex systems of 
underground pipelines were developed in [1-3]. It was assumed that any structure is 
elongated, branching one both along the strike and in-depth, with complex rigid and 
flexible pipe joints in a complex node. In [4-13], the seismodynamics of the underground 
structures under the harmonic and real seismic impacts are numerically studied. 
                                                      
*Corresponding author: nematilla81@mail.ru  

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 264, 02037 (2021)	 https://doi.org/10.1051/e3sconf/202126402037
CONMECHYDRO - 2021



In [14], the principles of calculation and design of underground structures in seismic 
regions were considered. The stresses at the underground pipeline bend investigated 
experimentally. It was determined that when two pipelines are connected at a right angle in 
a node, its displacements are approximately equal to the displacements of the surrounding 
soil. As a result, axial forces and bending moments appear in the curved sections of the 
pipelines during an earthquake. The test results showed that the axial forces were initiated 
in the pipeline in the direction of forced vibrations, and the bending moments appear at the 
right angle junction of two pipelines. 

When solving the problems of seismodynamics of underground pipelines, the main 
issue is the interaction modeling in the pipe–soil system. In this paper, we proposed a 
calculation method to determine the SSS of a polymeric L-shaped pipeline (figure 1), 
subjected to seismic effects, the front of which forms angle α with the axis Ox directed 
along the pipeline I axis. The results of theoretical studies allow estimating the stress-strain 
state of L-shaped polymeric pipelines under seismic load, directed arbitrary relative to the 
principal axes of the structure (figure 1) [15]. Recently, much attention has been paid to the 
calculation of pipelines of various configurations (L-, Т-, U- and V-shaped ones) [15]. 

 
Fig. 1. L-shaped pipeline section in the plane: I is pipeline; II is pipeline 

2 Methods 

To derive a system of differential equations of motion with boundary and initial conditions, 
the Hamilton – Ostrogradsky variational principle was used [16-18] 

 
  

t

dt 0    (1) 

 
where δТ, δП are the variations of kinetic and potential energy, δА is the variation of work 
of external forces, t is time. 

Consider the forces and moments of two pipelines I and II connected in a node 
 

IIxIxIIIxIIIx MMQNQN  ,, 1212 .  (2) 

 
The stresses-strains relationship for underground polymeric pipelines are obtained from 

[19] 
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where 
)1(2 


EG , as I→x for the first pipeline, as II →y for the second pipeline, the 

equations are written iteratively (see figure 1). 
Considering relationships (3), the system of equations (1) in displacements has the 

form: 
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The boundary conditions are: 
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Here, for the pipe I, the boundary conditions are formed at the junction of pipelines I 

and II. The boundary conditions (5) and relationships are used, where the junction node of 
pipelines I and II is indicated by B. 
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Here Iq1 , Iq2  are the seismic forces acting on pipelines I and II (Fig. 1); they have the 
form (see monographs [14]): 
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where μsoil is the Poisson's ratio of soil, kx is the coefficient of longitudinal interaction with 
soil, l is the length that corresponds to experimental study [12], u0x and u0y are the laws of 
ground motion. 

If we take into account relationships (8), then the system of equations (4) takes the form 
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Proceed to dimensionless displacements and coordinates 
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third-order matrices (figure 1, as I→x for the first pipeline, as II→y for the second pipeline, 
the equations are written iteratively). 
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for pipe II are: 
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where CCBBBAAA ,,,,,,, 11  are the third-order matrices. Initial conditions are: 
 

0



t

Y
t
Y  .   (15) 

 
To solve the boundary value problem (12), (13), and (14), we use the method of finite 

differences of the second order of accuracy. 
The problem is solved based on the algorithm of computer implementation. Mechanical 

and geometrical parameters are selected as follows: Е=5·102 МPа; ρ=940 kg/m3; 
DB=0.392 m; DH=0.4 m; F=π( 2

В
2
Н DD  )/4 m2; Iz=π( 2

В
2
Н DD  )/64 m4; lI=lII=20 m; 

kx=1.2·104 kN/m3; u0x(x,t)=Asinωt·cosα; a=0.004 m; ε=0.3 s-1; ω=2π/T; T=0.3 s; μsoil=0.2; 
μpipe=0.3; Ab=0.1;  =0.25; β=0.05; Ср=1500 m/s; 90  . 

3 Results and Discussion 

Numerical results are obtained for the displacements and force factors considering 
boundary conditions. The results are presented in graphs. When calculating the pipeline for 
earthquake resistance, the options were used for setting the ground motion during 
earthquakes in the form of a sinusoid (harmonic law). 

The changes in longitudinal u (figure 2,a) and transverse v (figure 2,b) displacements of 
underground pipelines at time t at the point of their intersection (x=0, y=0) at the incidence 
angle α=30° of seismic load are given below. 
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a) b) 

Fig. 2. Changes in longitudinal and transverse displacements of pipelines I and II in time at their 
intersection point 

As seen from figure 2, at the junction point of pipelines I and II, the values of 
longitudinal displacements change similarly to each other, but the vibration amplitudes 
have a negative sign. And for the transverse displacements of pipelines I and II at the point 
of their junction, the vibration amplitudes in phases coincide with each other (figure 2, b). 

Figure 3, a shows the change in longitudinal displacement of a polymeric pipeline at the 
point x=0 m in time at different angles of incidence of seismic load. The maximum 
displacement of the pipeline occurs at α=0, with a decrease in the angle of incidence, the 
values of the maximum displacement decrease. Over time, the amplitude of vibrations also 
decreases. 

 

 
a) b) 

Fig. 3. Change in longitudinal displacement of the pipeline in time at the point of pipelines 
intersection and along the axis at fixed times at different angles of incidence of seismic load 

In pipeline II, the maximum values of longitudinal displacement are reached in the 
middle of the pipeline (figure 3, b). The values of the angles of incidence of seismic load 
vary within 180120   for pipeline II. 
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In pipeline II, the maximum values of longitudinal displacement are reached in the 
middle of the pipeline (figure 3, b). The values of the angles of incidence of seismic load 
vary within 180120   for pipeline II. 
 
 

 

 
a) b) 

Fig. 4. Changes in longitudinal stresses over time at the point of intersection of pipelines under 
seismic load at different angles of incidence 

Figure 4, a and 4, b shows the changes in longitudinal stresses over time at the 
intersection of pipelines I and II (x=0, y=0) under seismic load at different angles of 
incidence. With a decrease in the angle of incidence of seismic load in the pipe I, the 
longitudinal stress values increase, the vibration phases coincide within 0≤α≤90 (figure 4). 
In pipeline II, with an increase in the angle of incidence of seismic load, the longitudinal 
stress values also increase. 

 

 
a) b) 

Fig. 5. Changes in shear stresses of pipelines over time at the point of intersection of pipelines 
under seismic load at different angles of incidence 

Figure 5 shows the changes in shear stress values of pipelines I and II in time at the 
point of their intersection under seismic load at different angles of incidence. From the 
figures, it can be seen that the maximum value of shear stress in both pipes is reached at 

90 . With a change in the angle of incidence of seismic load, the vibration phases of 
shear stress in both pipes do not change. 

4 Conclusions 

Thus, the simultaneous equations of longitudinal and transverse vibrations of an 
underground polymeric pipeline of the L-shaped configuration were derived for an arbitrary 
direction of seismic load. A computational scheme of the problem was constructed using 
central finite-difference relations. The analysis of the results obtained on the simultaneous 
longitudinal and transverse vibrations of underground L-shaped polymeric pipelines under 
seismic loading was carried out. The SSS of the L-shaped polymeric pipeline subjected to 
seismic effect was determined, and the axial forces and bending moments arising in curved 
pipelines during an earthquake were determined. An analysis of the above problems shows 
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that the viscoelastic properties of the polymeric pipeline contribute to the mitigation of 
external seismic effect, which consequently leads to less damage and thereby increases the 
strength and stability of these structures. 
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